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Abstract— In this paper, we propose a novel frame rate up-
conversion algorithm based on joint motion vector refinement
and visual-weighted motion compensation interpolation (MCI).
It utilizes a hierarchical motion vector refinement to correct
inaccurate motion vectors (MVs), which is composed of the global
level and the local level. In the global level, distinct inaccurate
MVs are detected by global controlling and then corrected by
neighborhood information. Afterwards, the local level performs
the local controlling to pick out local outliers and re-estimate
them with the maximum likelihood method. Finally, plausible
weights for each block in the interpolated frame, computed by
the similarity index(SSIM), are applied for visual compensation.
The experimental results demonstrate that compared with the
conventional algorithm EBME, the proposed algorithm achieved
the average PSNR by up to 2.7dB while the visual quality
improvement is also remarkable.

I. INTRODUCTION

Frame rate up-conversion (FRUC) refers to the technique
that generates a higher frame rate from the video with a
lower frame rate by producing new frames and inserting
them into the original one. It is widely used to convert two
display formats with different frame rates, or to remove the
temporal redundancy in video coding. The easiest way is
frame repeat or temporal averaging. Nevertheless, they fail
to handle sequences with high motion. Motion-compensated
interpolation (MCI) is soon adopted to employ FRUC using
the unidirectional or bidirectional motion estimation(ME) and
compensation. It provides better temporal visual experience
than frame repeat or temporal averaging. However, the MVs
from the bitstream are estimated to maximize the coding
efficiency instead of finding true motion. As a result, directly
using the received motion vector field (MVF) for MCI may
generate blockiness and ghost artifacts in the interpolated
results.

In order to find the true motion for the missing frames, Choi
et al. [1] performed bidirectional ME for each interpolated
blocks with additional spatial smoothness constraint. To reduce
complexity, Zhai et al. [2] presented an adaptive overlapped
block bidirectional motion estimation. Both approaches aim
to find the reliable motion. Kang et al. [3] extended the
bidirectional motion estimation by recursively smoothing the
motion vector field with a median filter. The drawback of
this method is that the smoothing process revises excessive
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MVs, resulting in even more errors. In [4], Lee et al. explicitly
classified the types of MVs and then handle them respectively.
However, compared with the previous frame, the current frame
always has occlusion problems, i.e., some areas that did not
appear in the previous frame appeared in the current frame.
Consequently, it becomes difficult for the ME methods that
we mentioned above to find the right corresponding blocks in
the previous and current frames. Therefore artifacts or block
effects usually occur in the predicted frame, leading to distinct
visual quality deterioration. Moreover, occlusion problems also
bring about ambiguity when predicting the middle blocks. It
is hard to decide which of the two blocks, the ones in the
previous frame and the current frame, should the predicted
block be more similar.

Considering the occlusion problem, although no more ref-
erence can be obtained from its adjacent frames, neighboring
blocks provide important information. For occlusion regions,
regardless of which part they belong to, the background or
the moving foreground, they are consistent with their neigh-
bors. Hence, we predict the trajectory of occlusion regions
without explicit classification. The proposed MV refinement
and similarity index-based MCI algorithm, defined as MRS-
MCI, initializes with the bidirectional estimated MVs, and
then the motion vector refinement process is performed to
enhance the accuracy of the predicted motion vectors. Inac-
curate MVs are detected with SAD threshold controlling and
corrected by coherent MVs. Instead of SAD, the structural
similarity(SSIM) [5] between the to-be-interpolated block and
the previous/current block, interpreted as visual weight, is
computed to work as a weight function in later use. With the
refined MVs and weights, MRS-MCI is performed to obtain
a visual pleasing whole frame.

The rest of this paper is organized as follows: Section II
describes the framework of the proposed algorithm, whereas
Section III is devoted for the detection and correction of
inaccurate MVs. The similarity index-based weighted MCI
process is given in Section IV. Experimental results are shown
in Section V. Finally, concluding remarks are given in Section
VI.

II. FRAMEWORK OF THE PROPOSED ALGORITHM

The existence of occlusion problem results in an inaccurate
estimation of the MVF, producing artifacts in interpolated
frames. In order to achieve a reasonable and favorable inter-
mediate frame, the proposed scheme excludes incorrect MVs
hierarchically and applies weight to the motion compensation



Fig. 1. Flow diagram of the proposed MRS-MCI algorithm.

process to enhance visual quality. Fig.1 shows the entire
processing flow of the proposed method including three parts.

∙ Bidirectional ME: The to-be-interpolated frame is di-
vided into non-overlapped blocks of same size and then
the block-based motion estimation is performed. Various
ME methods can be adopted. In this paper, we utilize
bidirectional ME [1] to acquire the initial motion vector
field. The bidirectional ME process is depicted in (1). For
each block in the to-be-interpolated frame 𝑓𝑛, we find its
aligned blocks in the previous frame 𝑓𝑛−1 and the current
frame 𝑓𝑛+1 by integer-pel ME.

ˆ⃗𝑣 = argmin
�⃗�

∑
𝑝∈𝐵

(∣𝑓𝑛+1(𝑝+ �⃗�)− 𝑓𝑛−1(𝑝− �⃗�)∣), (1)

where �⃗� denotes the MV of block 𝐵 and 𝑝 is the center
location of 𝐵.

∙ Hierarchical motion vector refinement: The bidirec-
tional estimated motion field is not so accurate that we
have to do some post processing to refine the incorrect
motion vectors. Without loss of generality, we consider
motion refinement in a global-local two-level first. The
solution can be easily generalized to a multi-level one by
considering some specific refinement, such as the border
block handling.

∙ Similarity index-based weighted MCI: The refined
MVs are used to perform a similarity weight computation
for each block to decide it is more “like” the correspond-
ing block in the previous frame or the current frame.
Hence, motion compensation can be performed with the
similarity weight applied to the refined MVs.

To well address the occlusion issue, we will employ the last
two parts of the MRS-MCI as elaborated in the next sections.

III. HIERARCHICAL MOTION VECTOR REFINEMENT

The MVs acquired with bidirectional motion estimations
may not represent the true motion vectors, making it necessary
to further refine the estimated motion vector. The proposed
MV refinement method performs hierarchically in both global
and local levels, or rather from coarse-to-fine scales. As to the
coarse-granularity scale, we use global information to correct
obvious inaccurate MVs for the whole frame to reduce major
errors, such as missing MVs for occlusion areas. And the fine-
granularity scale refers to minor adjustments in each local area
to improve the quality of the inserted frame.

A. Global Outlier Detection and Correction

Generally, a motion vector can be regarded as the inlier,
only if it has good matching properties together with spatial
coherence with the vectors assigned to the neighboring blocks.
Oppositely, an outlier is quite different from its neighboring
blocks, either in content or in MVF.

SAD is widely used as a measure to determine the difference
between two blocks. As computed in Eq.(2), where 𝑓𝑛+1, 𝑓𝑛−1

are two adjacent original frames, 𝑆𝐴𝐷(𝐵𝑖) denotes the SAD
of the i-th block 𝐵𝑖.

𝑆𝐴𝐷(𝐵𝑖) =
∑
𝑝∈𝐵

(∣𝑓𝑛+1(𝑝+ �⃗�)− 𝑓𝑛−1(𝑝− �⃗�)∣). (2)

Then those MVs, which propagate over large SAD, can be
considered as outliers, like block 𝐵𝑖 in Eq.(3):

𝑆𝐴𝐷(𝐵𝑖) > 𝑇, 𝑇 = 𝛼 ⋅
∑𝑛

𝑗=1 𝑆𝐴𝐷(𝐵𝑗)

𝑛
(𝛼 > 1). (3)

where
∑𝑛

𝑗=1 𝑆𝐴𝐷(𝐵𝑗)

𝑛 indicates the average SAD of all the
blocks within a frame. T, the threshold, is then computed as
the average number multiplied by 𝛼 (usually we set 𝛼=2).
Most probably the more motion the sequence contains, the
more outliers to correct, which means a smaller 𝛼. After the
outliers are detected, we take three steps to dispose them.

Step 1: If the MV 𝑣𝑜 is an outlier, we search its 8-
connectivity MVs as Fig.2(a) to find a MV with the minimum
SAD. Let 𝑣𝑚 denote the found MV, then 𝑣𝑚 should be
considered reliable.

𝑣𝑚 = argmin
𝑣𝑖

𝑆𝐴𝐷(𝐵𝑖), (4)

where 𝑣𝑖 is the i-th MV of the outlier’s 8-connectivity area.
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Fig. 2. Global outlier detection and correction. (a) Find the MV with a
minimum SAD around the outlier. (b) Enlarge the outlier’s block size to re-
search in adjacent frames.

Step 2: The outlier block is so close to the minimum block
that 𝑣𝑚 is probably the true MV for the outlier, hence, we can
set the outlier’s MV as below: 𝑣𝑜=𝑣𝑚.



Step 3: With the initializing MV 𝑣𝑜, the outlier block
is enlarged of half block size to re-search in the previous
and current frames for a new MV. Enlarged block contains
more information, which reduces mismatch errors, especially
in smooth regions. In this way, the motion vector field is
updated with less erroneous MVs.

B. Local Outlier Detection and Correction

In the local level, we use a window 𝑊 to slide through
the whole image with the similar detection method in Sec.3.1
to find the local outliers. After the outliers are detected, they
are corrected by selecting the most appropriate vector from a
candidate set in terms of the maximum likelihood described
as follows.

Centered at the outlier block as in Fig.3, we divide its
surrounding 8-connectivity blocks into 16 blocks by half-block
step. Because 8 blocks partition are not adequate to reflect the
trend of the local area. Then re-search the newly built blocks in
the previous and current frames initialized with its neighboring
MVs. Choose an optimal MV by trying different initials. Thus,
we get enough coherent references for the outlier.

Outlier

Fig. 3. Local outlier detection and correction. The outlier’s neighborhood is
divided into overlapped blocks and their MVs contribute to the refinement of
the outlier.

As stated before, no matter what kind of motion the outlier
belongs to, we can utilize its neighbor to predict its MV. Let
{𝑣1, 𝑣2, ..., 𝑣𝑛} denote the MVs of the neighboring blocks, ˆ⃗𝑣
denotes the outlier’s MV. According to the maximum likeli-
hood estimation, under the assumption of Gaussian stationary
local MVF, ˆ⃗𝑣 is predicted by the mean value of {𝑣1, 𝑣2, ..., 𝑣𝑛}
as depicted in Eq.(5).

ˆ⃗𝑣 =
1

𝑛

𝑛∑
𝑖=1

𝑣𝑖. (5)

IV. SIMILARITY INDEX-BASED WEIGHTED MCI

Although we interpolate the frame in the middle of the
previous and current frames, it does not mean the moving
object locates in the middle of the motion trajectory. In general
cases, the middle frame should be more similar to the block
either in the previous or the current frame so as to be visually
smooth.For example, Fig.4 shows successive frames from one
sequence. Note the corresponding blocks, marked by white
squares. In the previous frame,the man’s face is obstructed
by an arm while in the current frame it is revealed. Fig.4(e)
presents the problem, from the adjacent frames, we do not
know whether the man’s face is still hid behind the arm. If we
still interpolate by averaging the corresponding blocks, there

would be artifacts or fuzzy boundaries. The proposed MRS-
MCI implements a weighted process to avoid such ambiguity.
Since we need to compute the “structural” similarity between
blocks, SAD is no longer proper. Thus, we utilize the SSIM
to measure the similarity.

Fig. 4. The ambiguity during the interpolation of the middle block. (a)
and (c) are successive frames of Crew sequence. (b) is the reference for the
intermediate frame we want to generate. (d) and (f) zoom into the areas
highlighted in (a) and (c). (e) to-be-interpolated area.

𝑆𝑛−1 denotes the similarity between the previous block and
the predicted block. 𝑆𝑛+1 denotes the similarity between the
current block and the predicted block. Thus, the weights of
the two temporally adjacent blocks can be computed like this:

𝜔𝑛−1 =
𝑆𝑛−1

𝑆𝑛−1 + 𝑆𝑛+1
, 𝜔𝑛+1 =

𝑆𝑛+1

𝑆𝑛−1 + 𝑆𝑛+1
, (6)

where 𝜔𝑛−1 and 𝜔𝑛+1 denote the weight of the previous block
and the current block respectively.

As we have obtained the refined MVs and similarity
weights, the interpolation process can be performed to get a
whole frame. A weighted MCI method for motion compensa-
tion is used as bellow:

𝐵𝑛(𝑝) = 𝜔𝑛−1(𝑝)𝑓𝑛−1(𝑝− �⃗�)+𝜔𝑛+1(𝑝)𝑓𝑛+1(𝑝+ �⃗�), 𝑝 ∈ 𝐵𝑛,
(7)

where 𝐵𝑛 is the predicted block.
V. EXPERIMENTAL RESULTS

The performance of the proposed MRS-MCI algorithm has
been evaluated through the objective and subjective evalua-
tions. In the objective evaluation, we compared the PSNR
values of 50 interpolated frames. The image qualities of
interpolated frames constructed using the proposed and ex-
isting algorithms are assessed in the subjective evaluation. For
experiments, we set the block size to 16×16 and the search
range to ±12. Flower, Foreman, and Football are used in the
CIF (352×288) format as test sequences.

Table I summarizes the average PSNR for the test video
sequences, obtained by the proposed algorithm, MWCI [6]
and EBME [3]. The table indicates that the proposed algorithm
provides the PSNR improvement of up to 6.9dB compared to
MWCI and 2.7dB compared to EBME. The PSNR improve-
ment of the proposed algorithm comes from the use of motion
vector refinement and the visual-weighted MCI. The table also



(a) (b) (c)

Fig. 5. Comparison of the performance of conventional FRUC and the proposed MRS-MCI. (a) An original frame of Flower. Interpolated frame obtained
using (b) the conventional MCI (PSNR: 28.12dB), (c) the proposed motion vector refinement (PSNR: 29.75dB).

reflects that sequence Football sees no apparent improvement
in PSNR by the proposed algorithm. It is because the sequence
Football itself contains abundant high-motion caused artifacts,
which is not suitable for block-based ME.

Further experiments were conducted to verify the effective-
ness of each step in the proposed algorithm. The steps include
the global MV refinement, the local MV refinement and the
SSIM-based weighted MCI. For simulation, we implemented
the algorithm step by step. Moreover, results are output after
each step was taken. Fig.6 shows that the PSNR gain is
improved as a step is added. Note that for most frames the
local level refinement does correct some outliers missed by
the global level, proving the necessity of this step.

TABLE I
AVERAGE PSNR (dB) COMPARISON OF TEST SEQUENCES.

Method Test Sequences
Flower Foreman Football

MWCI [6] 24.48 28.43 19.10
EBME [3] 29.32 31.82 21.31
MRS-MCI 31.41 34.54 21.32
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Fig. 6. PSNR value as a function of the frame number with the proposed
two-level refinement separately for Flower sequence.

We also compared the performance of the proposed algo-
rithm with the conventional MCI [1] method in subjective
quality. Fig.5 illustrates the interpolated frames of the test
images, Flower. Areas that are highlighted by circles should
appear based on the original image, Fig.5(b) and Fig.5(c)
indicate that the proposed method works more effectively than
the conventional method.

Fig.7 demonstrates the effect of visual-weighted MCI,
which is one frame of Foreman. Fig.7(c) and Fig.7(d) are
two aligned blocks in its adjacent frames, and the proposed
algorithm considers the predicted block more “structurally”

similar to the previous block Fig.7(c). The interpolated result
of the highlighted patch by the proposed algorithm shown in
Fig.7(f) is closer to the original in visual quality.

VI. CONCLUSION

In this paper, we presented the MRS-MCI algorithm which
differs from the existing algorithms in that it uses a hierarchi-
cal MV refinement method and a visual-weighted MCI. In the
subjective evaluation, the image quality improvement by the
proposed algorithm is clearly visible. The objective evaluation
results indicate that the proposed FRUC algorithm outperforms
the EBME method by up to 2.7dB in the average PSNR for
the test sequences.

Fig. 7. Zoom of interpolation comparison between conventional method [1]
and MRS-MCI. (a) An original frame of Foreman, with a patch selected for
comparison. (b) Zoom-in of the patch. (c) and (d) are two aligned blocks in
adjacent frames. (e) Interpolated by the conventional method. (f) Interpolated
by the proposed MRS-MCI algorithm.
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